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Abstract—We have completed a study of thermovibrational convection in a vertical, cylindrical cavity for
Rayleigh numbers, Ra, of O, 104 and 10’, and vibrational Grashof numbers, Gr,,, of 10’ and 10’. Results
indicate that vibrational convection greatly increases heat transfer rates over the unmodulated case—by
7–1 5% at Grv = 10s and by 50–65V. at Gr, = 106. The observed resonant frequencies seem to agree
reasonably well with the predictions given by the resonance frequency expression derived by Fu and Shieh
[Int, J, Heat Mass Transfer 35, 1695-1710 (1992)], However. this equation has been modified to include
the effect of a static gravitational component and this modified equation appears to give better results

when Ra and Cr. are roughly comparable in magnitude, Copyright ((( 1996 Elsevier Science Ltd,

INTRODUCTION

Under terrestrial conditions, typical buoyant con-
vective flows may disrupt sensitive crystal growth or

homogeneous solidification processes. Microgravity

provides a unique environment in which these bulk

flows can be suppressed and more diffusive heat and
mass transport mechanisms can dominate, thereby

producing a variety of materials not available on

Earth. Such experiments are typically very sensitive to

gravitational levels and, although the mean value of
gravity on these platforms may be of the order of

10-6, instantaneous values of the g-level may be as

high as 10-2 or more [1]. These higher instantaneous

g-levels are due to [2]:

(I) external impacts with the spacecraft (meteor-

ites, dockings, aerodynamic drag);
(2) mass loss from the spacecraft (dumping or

rocket fringes) and
(3) crew or machinery movements within the space-

craft.

Such impulses and oscillations may induce convective
flows in some experiments. A particularly interesting

case occurs when the unsteady gravitational com-
ponent is harmonic and stimulates convection even
though the time-averaged value of this component is

zero. As a result, modeling and studies of vibrational

convection are useful in determining (1) the threshold
of disturbances for such experiments and (2) the range

of frequencies most detrimental to the experiment. In

addition, such studies are of fundamental interest to

heat transfer research since vibration convection may

affect the stability of some systems or greatly enhance

heat transfer rates. Finally. the response of such sys-

tems to oscillating gravitational fields may be of inter-

est to those studying nonlinear dynamical systems.

Many of the works on thermovibrational con-

vection have focused on the stabilizing or destabilizing

effects of vibration on convective flows or the heat

transfer enhancement due to vibrations. Sharifulin

investigated the heat transfer enhancement and flow

properties of the quasi-equilibrium state (defined as

the condition of no time-average flow), within a hori-

zontal cylindrical cavity [3]. Sharifulin found that at

high values of the vibrational Grashod number, Grv,

it was possible to get double-vortex flow rather than

typical single vortex flow. thereby greatly increasing

heat transfer rates. Ivanova and Kozlov made an

experimental study of heat transfer rate enhancement

between two coaxial cylinders [4]. They found that

the heat transfer rate increases with non-dimensional

frequency up to 600. After 600, the authors noted a

slight reduction in the heat transfer rate. Forbes et al,
made a similar experimental study with a liquid filled

rectangular cavity and noted a marked increase in the

heat transfer rate, up to 51.)~0 in some cases, near the

resonant frequency [5].

Gresho and Sani published resultg of an inves-

tigation of the stabilizing,ldestabilizing influences of

vibration on a fluid between two infinite planes at

different temperatures [6], They were interested in

determining the shift due to vibrations in the critical

Rayleigh number needed to induce convective motion.
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NOMENCLATURE

b vibrational amplitude h phase portrait lag time

9 gravitational acceleration v dimensionless axial coordinate
Gr Grashof number P viscosity
H cavity height v kinematic viscosity
n integer value P density
Nu Nusselt number @ dimensionless temperature

P pressure ( dimensionless radial coordinate
P dimensionless pressure T dimensionless time
Pr Prandtl number co dimensionless frequency

Q energy n frequency.
r radial coordinate

Ra Rayleigh number

t time Subscripts
u radial velocitry bottom chamber bottom

u dimensionless radial velocity c cold
1? axial velocity error error
v dimensionless axial velocity h hot
z axial coordinate, i current value

.j all other values
Greek symbols r resonance

c! thermal diffusivity side chamber side

P thermal expansion top chamber top
r number of divisions per oscillation v vibrational

period o reference or static case.

Their stability analyses showed that vibrations can describe the system. When the vibration period is in
significantly increase the stability of an unstable sys-
tem or destabilize a normally statically stable system.

Birigen and Peltier examined the same problem as

Gresho and Sani, but considered the full three-dimen-

sional (3D) geometry and equation nonlinearities [7].
In addition to sinusoidal modulations they also con-

sidered spatial and temporal random modulations of

the g-field, Qualitatively, they arrived at the same
results as Gresho and Sani and, of the temporal or

spatial random modulations, they found spatial ran-

dom modulations introduce more local excitations,

which may be detrimental to space based crystal

growth.

Upenskii and Favier studied the feasibility of using

high frequency vibrations to suppress convection in a
typical Bridgman-scheme crystal growth process [8].

Results indicated that, for typical semiconductor

applications, magnetic field suppression would be sim-

pler and more effective for horizontal crystal growth.
In contrast, their results predicted a 10–20 times

decrease in the magnitude of velocities near the crystal

growth front with horizontal vibrations in a vertical
Bridgman growth process over the unmodulated case.

Very few works have considered the frequency

dependence of vibration systems. Many studies con-

sider only high frequency vibrating systems where the
vibration period is considerably smaller than the

characteristic response time of the fluid. Under such

conditions, time-averaged equations may be used to

the order of the hydrodynamic time scale, these aver-
aged equations cannot be used and the full transient
equations must be solved, Yurkov solved such a case
for a 2D square cavity under-going vertical vibrations

with different side wall temperatures and a linearly
varying temperature distribution on the top and bot-

tom surfaces [9–1 1]. Yurkov examined the frequency

dependence of the average Nusselt number by cal-
culating the Nusselt number over a range of frequen-
cies, encompassing the resonant region. His results
indicated a marked increase in heat transfer rates in

the resonant region, somewhere between a dimen-
sionless frequency of 102–10~for vibrational Grashof
numbers, Gr,, ranging from 104 to 4.9 x 105.

Fu and Shieh made a similar study of the frequency

dependence of the heat transfer rate for the classical
2D square cavity problem [12]. This study was similar
to that of Yurkov, but with adiabatic boundary con-

ditions along the top and bottom boundaries. This

case was studied for a vibrational Grashof number,
Grv = 10’, and Rayleigh numbers, Ra = O, 10’ and
10’, over a non-dimensional frequency range from 1
to 104, The authors divided the different frequency
regimes into the five categories listed in Table 1. Like
Yurkov, they found a marked increase in the heat
transfer rate at the resonant frequency. In addition,

they derived the following expression which may be
used to predict the resonant frequency, O,:

co, = J’(2Gr. ) Pr (1)
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Table 1. Vibrational regimes as outlined by Fu and Shieh
[12]

Frequency label Characteristics

Quasi-static Static convection dominant
Vibration convection Static and vibrational convection

comparable
Resonant Marked increase in heat transfer

rate
Intermediate Multiple frequency phenomena
High frequency Frequency independent response

where Grv is the vibrational Grmhof number and Pr
is the Prandtl number of the fluid. Fu and Shieh found

that the predictions of equation (1) were in good
agreement with their numerical results for Gr, = 106

and also compared the equation with Yurkov’s results

for Grv = 9x 104, 1.6x 10’, 2.5x 105 and 3.6x 105.
They found that the equation adequately predicted

the resonance frequency for all the cases except

Gr, = 9 x 104in which the equation predicted a higher

resonance frequency than observed.
The objective of this work is to study the heat trans-

fer rate within a fluid-filled cylindrical enclosure sub-

jected to vibration over a wide spectrum of frequen-

cies. These calculations will be performed for both
zero-g and terrestrial gmvitational systems. Of par-

ticular interest is the heat transfer characteristics of

the system at the resonance frequency of the chamber.

The results for the resonant frequency will also be

compared with the correlation given by Fu and Shieh

[12].

PROBLEM GEOMETRY

The case considered in this work is a vertical cyl-

inder with radius, R, equal to its height, H, filled with

a Boussinesq fluid with a Pr = 0.71. A diagram of the

problem is shown in Fig. 1. The cylinder is subjected
to vertical. sinusoidal gravitational modulation such

that the problem geometry is symmetric and may be

considered in only two dimensions. These sinusoidal
vibrations have an amplitude, b, and frequency, Cl
Therefore, the instantaneous gravitational accel-

eration level, g(~), is made up of a static part, go, and

a varying part, bflz sin !2t,or

g(t) = gO+ (@ sinflf. (2)

The top and sides of the cylinder are considered iso-

thermal and at a temperature, T~, while the bottom is

considered cold at T.. At the centerline the tem-

perature gradient is zero. All velocity components are

assumed to be zero at all of the solid boundaries. At
the centerline, the r component of the velocity is zero

while the gradient of the z component in the direction

normal to the centerline is zero.
The problem is specified

and continuity equations

dimensional variables.

Dimensionless twiables

by the energy, momentum

using the following non-

L = (r/R) q = (z/H) z = (Xt/H2)

U = (uH/a) V = (uH/u)

~ = (T- T,) p =pH’

(Th– TJ pc’x2

Gr = [~bQ(7’h – TC)H]’
\

2V’

Continuity

I

I
\

I
m-w-u=~ Im–m– I

—1
I
I

g(t) = go + bf22 sin(flt) ~

I
I

f-.”=;=”=”

(3)

e=l, u=v=o

L

I
H

Fig. 1. Chamber geometry and boundary conditions.
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Table 2, Vertical cylinder model comparison: a comparison between Nusselt numbers derived from the code used in this
work and results from Huang and Hsieh for Pr = 1.0 and an aspect ratio of 1[15]

Ra= 102 Ra = 104 Ra = 10’
Huang and Huang and

This work
Huang and

Hsieh This work Hsieh This work Hsieh

NJu,op 0.3004 0.2937 0.1370 0.1576 0.0601 0.0628
&,,de 2,830 2,796 3.001 3.014 3.285 3.334
Nubor,om 5.961 5.9539 6.139 6,073 6.629 6.591

‘-$+’’[%’3+$1
z-momentum

+

(4)

+ Pr(Ra + @~(2Gr,) sin coT)@ (5)

Energy equation

‘[%’%)+5?“)
These equations are solved numerically using finite

differences and the SIMPLER technique. This tech-

nique has been thoroughly discussed in the literature

and will not be discussed in detail here [13]. Briefly,
the SIMPLER technique employs a staggered grid

where pressure and temperature nodes are placed at

the center of control volumes and the velocity com-

ponents are positioned at the faces of these volumes.
In this work the resulting discretized equations are

solved using a line method and iteration for a par-

ticular time step is continued until the continuity
requirement is met within a specified limit for every

cell within the computational domain,

SOLUTION PROCEDURE

The code used in this work has been tested and

compared with several published works, but only one
example will be considered here [14]. Huang and

Hsieh solved the problem shown in Fig. 1 under steady

conditions using finite differences and a non-uniform
21 x 21 grid for Ra = 10s, 104 and 105 with a Bous-

sinesq fluid of Pr = 1,0 [15]. Their results included

Nusselt numbers for all three surfaces of the cyl-

indrical cavity. For an aspect ratio of 1, (i.e. H = R),
these Nusselt numbers are defined as

(8)

Results from the model used in this work for the
identical conditions are compared with the results of

Huang and Hsieh in Table 2. A 21 x 21 non-uniform

grid was also used in this work so the results obtained

in this work are not from a more refined grid. The
model results compare favorably with those of Huang

and Hsieh over the range of Rayleigh numbers. For

reference and comparison with data later in this work,

results for the static case with Pr = 0,71 are also given
in Table 3. The cases investigated in this work are

shown in Table 4. All grids were non-uniform and the

numerical results near the resonant frequency were

checked for a variety of grid sizes to determine a
suitably refined mesh. A 21 x 21 grid was found to be

sufficient in all cases except for Ra = 105 where a

25x 25 grid was used. The choice of time step in this

work was made by dividing one complete oscillation

period by a value, r, i.e.

Table 3. Static Rayleigh number results: Nusselt number
results for the vertical cylindrical cavity with Pr = 0.71 and

an aspect ratio of 1

Ra o 104 105

&op

.Ys,de
NubOttOn,

0.3103 0.1383 0.06056
2.804 2.979 3.263
5.917 6.096 6.586

Table 4. Grid sizes and period divisions used in this work

Grv
Ra 105 10’

Grid r Grid r

o 21 128 21 128
104 21 128 21 128
105 25 256 25 256
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(lo)

As in the case of the grid, the choices for r were made

by comparing the results with larger period divisions.

Values for the number of divisions for period, r, are

also given in Table 4.
The following procedure was used for each run:

(1) choose run conditions: Rayleigh number, Ra;
vibrational Grashof number, Gr, ; and frequency, o;

(2) iterate upon condition where Gr,, = O until

steady conditions are achieved—this permits identical

starting conditions for all runs;
(3) when steady conditions are reached, gravi-

tational modulations are introduced and

(4) continue run until convergence is reached.

The convergence criteria used in this work are not

straightforward and will be discussed in detail. In this

work. the simulation was considered converged if it

met one of the two convergence criteria,

Criterion 1: periodic response

At the end of each sinusoidal cycle, the maximum

value of the instantaneous average Nusselt number is

compared with the external values of the three pre-
vious oscillations. If, for each of the surfaces of the

chamber, each of these four maximum values agree

within a certain degree, specifically.

Numax,, – Num,x,,

Numax,,
< ]0-4 (11)

where i indicates the maximum of the current oscil-
lation and j represents the maxima of the three pre-

vious oscillations, then the simulation is considered

converged.

Criterion 2: multiple period or aperiodic response

This criterion involves flows with responses which
are not periodic or are periodic but have a period not

equal to that of the forcing function, namely the g

modulations. The solution for this case is to consider
the most important quantity in the calculations, i.e.

the average heat transfer rate through the system,

Even if the flow is not periodic while undergoing har-

monic motion, a time-averaged energy balance on the
chamber must exit. Such a balance on the chamber

yields

(12)

where Az is a sufficiently large sampling time. In this
work a running average of the Nusseh numbers is

made and the energy error, Q.,,O, is defined as

Q
(2Nuside+ Nut.P)-Nub.tmm

error = Nubottom
(13)

If the iterations were continued until the instan-
taneous value of the energy error was near zero, par-

ticular combinations of the Nusselt numbers could
give a sufficiently small energy error before true con-

vergence is reached. To avoid this early convergence

a further test is made. At the end of each sinusoidal

modulation, the root mean square of the energy error

integrated over the cycle is calculated. If the r.m. s.

value of the energy error is less than 10-3 over the
course of the cycle, convergence is reached. Since all

calculations start with the initial condition of no
modulation, considerable error would be introduced
if the running average calculations were started at

the beginning of the g-modulations. Therefore, the
averaging procedure is delayed by a time, ~ = 0.15.

The choice of delay time is somewhat arbitrary<on-

vergence can be reached with ~ = O, but it may take

considerably longer, computationally. A delay time of

0.15 was found to be sufficiently long transient
response time for the fluid to react to the abrupt

initiation of modulations.

Although somewhat elaborate and detailed, all of

the runs tested reached one of the two convergence

criteria. The second convergence criterion is a suitable

test for any of the cases tested and criterion no. 1 is
not strictly needed. However, if a flow is periodic, it

will often satisfy criterion no. I earlier than criterion
no. 2, thus saving computational time.

RESULTS

Nusselt number data

The goal of this work was to determine the average

heat transfer rate through the system as a function of

the vibrational frequency. To do this we have made
several numerical simulations of this process over a

range of frequencies and recorded the average heat

transfer rate based on the convergence criteria dis-

cussed in the previous section. Figures 2 and 3 are
plots of the cavity Nusselt numbers, representing the

average rate of heat transfer through each surface

of the chamber, as a function of the dimensionless
frequency at zero-g conditions. The time-averaged

Nusselt numbers for each surface of the cavity are

shown by the solid curves in Fig. 2 and 3. In addition

to these averages, the maximum and minimum Nus-

selt numbers are also given in the plot. These maxima

and minima were gathered from a finite sample of
oscillations before the simulation reached conver-

gence. For cases where the flow is periodic these max-
ima and minima are fairly accurate. In the region

where the flow is aperiodic, this finite sample may be

too small to give the absolute extrema. Therefore, in
the vicinity of the resonant region, the maxima and

minima should be regarded only as guides in the range

of oscillation in the average Nusselt number.
In Fig. 2, the average rate of heat transfer through

the cavity, as given by the plot of Nu~O,,O~,steadily

increases with frequency until reaching a maximum at

the resonance regime. After reaching this region, there
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Fig. 2. Nusselt number results for Ra = O and Gr,, = 105.

is a sharp decrease in the rate of heat transfer and the

average Nusselt number reaches a plateau. At this

point, the average Nusselt number is relatively inde-

pendent of frequency and the minima and maxima

tend to converge to this average value.

The trends for Gr,, = 10G and Ra = O are similar
with the following exceptions. As GrU is increased,

the resonance region peak becomes narrower and the

peak frequency is shifted farther down the spectrum.
At low frequencies, i.e. the quasistatic vibrational

region, the resulting amplitudes in the average Nusselt

number are small and the average Nusselt number is

a relatively weak function of the frequency, At slightly

higher frequencies, in the vibrational convection

region, the spread between the maxima and minima

begins to increase and the average Nusselt number

steadily increases. Just above co = 100, the resonance

region begins. In this region there is a much higher

increase in the heat transfer rate and the widest spread
in maxima and minima. For example, the average
Nusselt number oscillates between roughly 7 and 13.5

at co - 1000 for Gry = 106.
After the resonance region, the intermediate

vibrational regime is reached. In this region there is a

quick decrease in the heat transfer rate until the aver-

1
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Fig. 3. Nusselt number results for Ra = O and Gr, = 10’
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age Nusselt number reaches a plateau. The inter-
mediate regime is a tmnsition region between the res-
onance and high frequency regimes. In this region,

the period of vibration is becoming shorter than the

hydrodynamic time scale.
At the high frequency regime, the average heat

transfer rate is essentially independent of frequency

and the minimum and maximum Nusselt values are

gradually converging to this average. One interesting
point to note is that the minima and maxima for the

top Nusselt number converge to the average value

rather early and that, of the high frequencies, the top

is essentially adiabatic. Almost all of the heat transfer
occurs between the bottom and side wall boundaries.

Figures 4 and 5 are plots of the average Nussek

numbers for Ra = 104 and Gr, = 105 and 106, respec-

tively, In these cases, the average heat transfer rate

curve still follows the same trends as for the zero-g

case, although the addition of the static gravitational
field tends to diminish the spread in the max-

ima/minima at low frequencies. The average heat

transfer rate is also even less dependent upon the

frequency as in the zero-g case. There is a similar
increase in the heat transfer rate at the resonance

region; roughly 500/0. These values are very similar to

those of the zero-g case indicating that the resonance
region is only slightly affected by the static gravi-

tational field.
Figures 6 and 7 are plots of the average Nussek

numbers for Ra = 105and Grv = 105and 106. In these

plots the effect of the static gravitational field tends

to pervade much farther than in the previous cases,

damping the fluctuation of the Nusselt number,
Again, the average Nusselt number is essentially inde-

pendent of frequency in this region.
In the case of Ra = 105,Gr,, = 106, there is an abrupt

change in the Nu~O,,O~near the peak of the curve. A

closer view of this section of curve is shown in Fig. 8.

From this closer view it is easier to see the sharp drop

in the Nusselt number just after the maximum heat

transfer rate point is reached, Fu and Shieh found
similar behavior in their work in the resonance region.

In their work Fu and Shieh started at a particular

frequency and incremented/decremented the fre-

quency, recording the data as they scanned the

frequency range. They found that, near the resonance

peak, they could sometimes get two different average
Nusselt number curves depending upon whether the

frequency was being increased or decreased. Since all

the simulations in this work were started from the

static, no vibrational case, it is possible that only one

section of the curve is possible in this work. This type

of abrupt jump is also present in the Nu~<,,,o~cases of

Figs. 3(c) and 5(c).

Frequenc~ response
A more detailed analysis of the frequency response

of the system to the gravitational modulation yields

some interesting phenomena, Figure 9 is a plot of the

response of the average Nusselt number over time for
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Fig. 4. Nusselt number results for Ra = 10’ and Gr. = 105.

five distinct frequencies. In each case, the response of

the bottom boundary Nusselt number to 100 cycles

of the gravitational modulation is shown along with

phase portraits for each frequency. These data were

collected from the Ra = O and Gr,, = 106 case only,

but the data for the other conditions show similar

behavior. The phase portraits in Fig. 9 were generated

by plotting the value of the Nusselt number with a 1/4
period phase lag against the unlagged value of the

Nusselt number.
The response to a nondimensional frequency of 100

is shown in Fig. 9(a). This response is within the
vibrational convection region where the static and
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Fig. 5. Nusselt number results for Ra = 10’ and GrV = 106,

vibrational convection are of comparable magnitude.

There is a simple, periodic response to the forcing
function as shown by the single, simple closed loop in

the phase portrait.

As the frequency increases the response becomes
more complex. The region with o = 850 is rep-

resentative of the resonance region. In this region the

heat transfer rate does not consist of simple, single
periods. Instead, it has a period-4 response as shown

by the four lobes of the phase portrait.

The results for co = 1000 are even more complex

than for co = 850 even though it only represents a

modest increase in the frequency and the results are
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Fig. 6. Nusselt number results for Ra = 105 and Grv = 105.

still in the resonance regime. Characteristics of fre-

quencies less than the period of the forcing function
have appeared. Also the response as shown in the

phase portrait is much more complex, There are many

more lobes than in the plot for OJ= 850, but these

lobes appear to be banded. The banded structure of

the phase portrait suggests that the response is still a

period-n response, but n is very large in this case.
The response for u = 2500 is also very interesting.

The oscillations in the Nusselt number seem to have

a period comparable to that of the forcing function

and the amplitudes are nearly the same, yet these

amplitudes are all slightly different and there is no
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apparent repeating pattern in these oscillations. There

are also no distinct bands in the phase portrait for

co = 2500, and the phase portrait loops appear to be
evenly distributed within a closed region, This type of

response is characteristic of chaotic flows. Although

it cannot be conclusively stated whether this particular
case is chaotic, the evidence gathered thus far indicates

that this may be a possibility.

Finally, theresponseto co= 1000Oisshown in Fig.

9(e). As the frequency is increased to this high fre-

quency regime, the Nusselt number response again

returns to simple, harmonic response as shown by the

single, closed loop in the phase portrait.

10.0 ~ I I ,

9.8 –

9.6 —

9.4 –

9.2

~
500 700 1000

Dimensionless Frequency, u

Fig. 8. “Jump” phenomenon: a closer view of the resonance
region for Ra= 105, Cr. = 106 and the abrupt dip in the

Nusselt number curve.

Resonant frequenc~~

In this work the resonance frequency was assumed

to be the frequency where the energy transfer rate

through the cavity was maximized, Table 5 is a list of

these maxima for the six conditions studied in this
work, Since information is only available from alim-
ited number of discrete frequencies, the maximum

value is given along with a range of frequencies which

bracket this maximum. The range boundaries fall

within approximately 1°A of the maximum energy
transfer rate.

Table 5 also shows the percentage increase in the

heat transfer rate at the resonant frequency over the

static, nonvibrational case, Asshown inthe table the

resonant oscillations greatly enhance the heat transfer

rate through the system. The greatest increase occurs
for the zero-g or Ra = Ocase. As the Rayleigh number

is increased the differences between the modulated and

unmodulated cases begin the shrink. Nevertheless, for

the Grv= 10bcases studied inthiswork there isa5&

65 Y. increase in the heat transfer rate at the resonant

frequency. The increases for the Grv= 105 cases are
more modest andrangefrom7to 15°/0.

According to equation (1) the resonance frequency

should be318 and 1004 for Grv = 105 and 106, respec-

tively. These predictions seem toagreeonly with the
results for the cases of Ra=O, Grv= 105 and

Ra= 104, Grv= 105. For example, the numerically

derived resonance frequencies for both Ra=O, 104
and Grv = 106 fall roughly 200 points below the pre-

dictions of equation (1). The resonance frequencies in
Table 5 have been chosen because the energy transfer

rate is maximized at these points. This definition,

though undoubtedly close to the resonant frequency,

may not represent the true resonant value. As such,

the frequency ranges which bracket these maxima

have also been included in this table. In these two

cases the resonance peak/ranges are broad and are
nearly centered on the values predicted by equation

(l). The only exception to this is the data for Ra = 105.

Both the numerically derived resonance frequencies
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Table 5. Resonance frequency results

0, NubO,,.~ Percentage increase Frequency W, from 0+ from
Ra Grv observed at w, in heat transfer rate range equation (1) equaiton (15)

o 105 318 6.85 14.7 136445 318 318
0 10’ 810 9.83 64.5 772-1153 1004 1004

104 105 318 6.95 12.8 206405 318 404
104 106 825 9.78 58.9 778-1259 1004 1038
10s 105 700 7.12 7.0 591-789 318 771
105 10’ 1250 9.97 49.9 804-1560 1004 1278

and ranges are significantly higher than the results

predicted by equation (1).

One possible explanation for the discrepancy could

be that the effects of the static Rayleigh number on

the resonant frequency have become more significant

at Ra = 105. In deriving the relationship for the
relationship for the resonant frequency, Fu and Shieh
reasoned that the inertial terms were comparable to

the buoyancy term., or

(14)

They also reasoned that the resonant frequency is only

slightly affected by the static gravitational term and

dropped the second term in the right hand side of
equation (14) from their derivation. If this term is

included in the derivation the result is a quadratic

equation with the following solution:

~r = J(2Gr,pr2) +v’(2Gr,,Pr2 +2rc’RaPr)
2

(15)

Equation (15) reduces to equation (1) for Ra = O and

the effect of the static Rayleigh number on the res-

onance frequency is trivial at low values of the static
Rayleigh number, reinforcing the assumption made

by Fu and Shieh, For Grv = 10s–106, as studied in this

work, the value of the resonance frequency is relatively

unattested until reaching the range of Ra = 105. Equa-

tion (15) predicts an increase in the resonance fre-

quency with higher static Rayleigh numbers and a

comparison between equation (15) and the numerical

results from this work is shown in Table 5. Equation

(15) gives the same reasonable agreement for the

Ra = O or 104 cases, but it gives better agreement for

the Ra = 10s case over equation (1).

CONCLUSIONS

We have presented a model of thermovibrational

convection in a vertical, cylindrical cavity and studied

the frequency dependence of the heat transfer rate

through the system at several Rayleigh and vibrational

Grashof numbers. In addition, a great deal of atten-
tion has been focused on the energy transfer rate at

the resonant frequency of the cavity, In the resonant

regime, the therrnovibrational case gave a 5&65°A

higher heat transfer rate at Grv = 10’ and a 7–15 V.

higher heat transfer rate at Grv = 105 over the static,

unmodulated case. The results of this work are similar
to the results obtained by Fu and Shieh, but, unlike

their work, the geometry in this case consisted of
multiple surfaces for heat transfer. Most of the energy

transferred in the system occurred between the side

wall and the bottom surface. This is especially true at

high frequencies where the top of the cavity can

become virtually insulated. This result is similar to

what occurs for the static case at high Rayleigh num-

bers [15]. Finally, equation (1) derived by Fu and

Shieh is a useful means of estimating the resonance
frequency at low static Rayleigh numbers. However,

this equation has also been extended to include the

effect of the static gravitational field on the resonance

frequency and it appears that equation (15) may be
more suitable for cases where the Rayleigh number

and vibrational Grashof number are somewhat com-

parable in magnitude.
A closer view of the response of the system to

increasing frequency has also shown some interesting

results, At low frequencies the heat transfer rate

response to vibrations is a simple, period-1 response.

As the resonance region is approached, this response

seems to remain periodic but increases in complexity.

Just above the resonance frequency, the flow becomes
very complex and it appears that the Nusselt number

response is chaotic. Finally, as the high frequency limit

is approached, the flow returns to a simple periodic

response. A more detailed study of these different
regimes and the possibility of a chaotic response will

be the subject of future work.
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